Course: IHS 527 – Noise Measurement and Control

Semester: Spring 2015

Number of credit hours: 3

Description: IHS 527. Noise Measurement and Control. 3 Hr. PR Senior or graduate student. Includes the study of noise physics, effects of noise on hearing and well-being, noise exposure regulations, and engineering of noise controls. Practical experience with noise dosimeters, sound level meters, and instrumentation used to assess human noise exposure is provided by classroom demonstration and by a field trip.

Prerequisite: Senior or graduate student

Edited by Elliott H. Berger, Larry H. Royster, Julia D. Royster, Dennis P. Driscoll, and Marty Layne
Optional: The Noise-Vibration Problem-Solution Workbook

Purchase at Amazon or both books together as a set from the American Industrial Hygiene Association (join as student member first to receive discount). www.AIHA.org

Additional materials on eCampus

Instructor
Steven E. Guffey, PhD, CIH
Professor
Dept. of IMSE

Phone 304-685-1298 (NOT 9-1 PM Tuesdays and Thursdays)

© 2003-2015 Steven Guffey, PhD, CIH
Course Goals/Learning Objectives: Students will be able to:
1. Compute values related to the fundamentals of the physics of noise, including effects of
distance, multiple sources, etc. on noise levels.
2. Understand OSHA and NIOSH regulatory standards
3. Describe hearing conservation programs, including audiometric testing and hearing
 protection.
4. Do noise measurement and noise surveys.
5. Compute values needed for engineering controls of noise and vibration.

IH Educational Outcomes: This course helps achieve the Educational Outcomes for
the MS Industrial Hygiene Program in the following areas:
1. an ability to use the techniques, skills, and modern scientific and technical tools
 necessary for professional practice, such as: Principles and methods of control of
 physical and chemical hazards. (IMSE 564, 660 and IH&S 627, 628)
2. the ability to apply knowledge of math, science, and Industrial Hygiene. (Project, IH&S
 628)
3. the ability to work individually, on teams, and/or on multi-disciplinary teams to identify,
 formulate and solve problems using Industrial Hygiene, safety, and ergonomics
 knowledge, skills and tools. (Project, 628)
4. an ability to formulate or design a system, process or program to meet desired needs.
 (IMSE 564, 660 and IH&S 627, 628)
5. The latter 3 are evaluated in the noise project

Performance Metrics:
1. Faculty assessment of home works, projects, and exams.
2. Student self-assessment.

Grading Elements, Weighting and Scale:

<table>
<thead>
<tr>
<th>Grade Element</th>
<th>Weighting</th>
<th>Grade Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>midterm(s)</td>
<td>35%</td>
<td>A =>90</td>
</tr>
<tr>
<td>Final(s)</td>
<td>35%</td>
<td>B =>80</td>
</tr>
<tr>
<td>quizzes and homework</td>
<td>15%</td>
<td>C=>70</td>
</tr>
<tr>
<td>Projects</td>
<td>15%</td>
<td>D=>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F<60</td>
</tr>
</tbody>
</table>

Cheating and mutual assistance: Cheating on exams will produce severe
consequences. For laboratory reports, each student is expected to write their own
reports with no assistance in organizing or writing the report from anyone other than
the instructor. Students may be organized into groups to execute the labs or projects
and to collect data. Students may share such data and discuss how it should be
used in a report, but may not plagiarize each others tabular or written presentation in the reports. Likewise, students may discuss how the data should be analyzed, but may not use the analyses done by another or provide their own analyses to another student.

Statement on Attendance:
Student attendance is expected unless excused by the instructor. The basis for an excused absence will follow University and IMSE policy. Class attendance will not be taken each week, but class participation is expected.

Statement on Social Justice:
West Virginia University is committed to social justice. I concur with that commitment. I expect to foster a nurturing learning environment that is based upon open communication, mutual respect, and non-discrimination. Our University does not discriminate on the basis of race, sex, age, disability, veteran status, religion, sexual orientation, color or national origin. Any suggestions as to how to further such a positive and open environment in this class will be appreciated and given serious consideration.

If you are a person with a disability and anticipate needing any type of accommodation in order to participate in this class, you must make appropriate arrangements through Disability Services (293-6700). They will identify the nature of the accommodation your disability requires.

Statement on Disability Accommodation
If you are a person with a disability and anticipate needing any type of accommodation in order to participate in this class, you must make appropriate arrangements through Disability Services (293-6700). They will identify the nature of the accommodation your disability requires and inform me of appropriate accommodations.
Approximate Course Topic Outline

<table>
<thead>
<tr>
<th>Course Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Anatomy and Physiology of the Ear: Normal and Damaged Hearing</td>
</tr>
<tr>
<td>Physics of Sound and Vibration</td>
</tr>
<tr>
<td>Audiometric Testing, including lab</td>
</tr>
<tr>
<td>Standards and Regulations for Dose Assessment, including dose calculations</td>
</tr>
<tr>
<td>OS&HA</td>
</tr>
<tr>
<td>NIOSH, ACGIH</td>
</tr>
<tr>
<td>Sound Measurement: Instrumentation and Noise Descriptors, including demonstrations and lab</td>
</tr>
<tr>
<td>Noise surveys and data analyses, including lab</td>
</tr>
<tr>
<td>Midterm</td>
</tr>
<tr>
<td>Hearing Protection Devices</td>
</tr>
<tr>
<td>Noise control engineering</td>
</tr>
<tr>
<td>Elements of a hearing conservation program</td>
</tr>
<tr>
<td>Standards for programs:</td>
</tr>
<tr>
<td>Program overview and administration</td>
</tr>
<tr>
<td>Education and motivation</td>
</tr>
<tr>
<td>Hearing protection devices</td>
</tr>
<tr>
<td>Audiometric monitoring</td>
</tr>
<tr>
<td>Evaluating program effectiveness</td>
</tr>
</tbody>
</table>

Emphasis in Reading, Chapter:
- Introduction: 1, 5, 18
- Anatomy and Physiology of the Ear: Normal and Damaged Hearing: 4
- Physics of Sound and Vibration: 2
- Audiometric Testing, including lab: 4
- Standards and Regulations for Dose Assessment, including dose calculations: 16
- OSHA
- NIOSH, ACGIH
- Sound Measurement: Instrumentation and Noise Descriptors, including demonstrations and lab: 7
- Noise surveys and data analyses, including lab: 7
- Midterm: 10
- Hearing Protection Devices: 10
- Noise control engineering: 9
- Elements of a hearing conservation program: 6, 8, 11, 12

Prepared By: Steven E. Guffey, PhD, CIH
Date: 21 Dec 2013